Aim. The aim of the current research consist using an electron microscope determination diffusion of tannic acid, known as a micromolecular tracer, at the level of menings surrounding the spinal cord and peripheral nerves sheath after his application.
Materials and methods. The experiment was given 10 mature white rats weighing from 200 to 260 grams. By introducing a 2.5% glutaraldehyde solution onto the ascending aorta, was given general fixation of the studied animals. Postfixation of fragments of the spinal cord and sciatic nerve was performed in a 1% solution of osmium acid within 1 hour. Then, the studied fragments were immersed in a 1% solution of tannic acid prepared in 0.5 M cacodilate buffer (pH 7, 4) within 2 hours. Araldit-Epon və Spur blocks were prepared from the taken fragments according to the protocols used in electron microscopy. Ultrathin sections obtained from the latter were studied under a JEM-1400 electron microscope.
Rezults. The data obtained indicate that the applied 1% tannic acid solution is transported by the collagen fibers themselves and by the intestinal compounds. It should be noted that although the interstitial substance is not colored in areas containing hyaluronic acid, fine, osmifil tannic acid granules are detected at the level of the glycosaminglicans. In both the spinal cord and the sciatic nerves, tannic acid is transported to the level of structures that play a biological barrier.
Therefore, the location of the tracer is separated by a single layer of arachnoidal and perineural barrier cells, respectively, from the cerebrospinal and endoneural fluids. Thus, accumulation of ions with osmotic activity at the level of biological barriers can provide transport of the cerebrospinal and endoneural fluids in the direction of the sheaths that surround them.
Seitz R., Löhler J., Schwendemann G. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study. Cell Tissue Res. 1981;220(1): 61-72.
Krisch B. Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of New-World monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 1988 Mar;251(3):621-31.
Reina M., De Leon Casasola O, López A. et al. The origin of the spinal subdural space: ultrastructure findings. Anesth Analg. 2002; 94(4):991-5
Reina M., Prats-Galino A., Sola R. et al. Structure of the arachnoid layer of the human spinal meninges: a barrier that regulates dural sac permeability. Rev Esp Anestesiol Reanim. 2010; 57(8):486-92
Abbott N., Pizzo M., Preston J. et al. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol. 2018; 135(3):387-407.
Siegenthaler J., Pleasure S.. We have got you 'covered': how the meninges control brain development. Curr Opin Genet Dev. 201; 21(3):249-55.
Decimo I., Fumagalli G., Berton V. et al Meninges: rom protective membrane to stem cell niche. Am J Stem Cells. 2012;1(2):92-105.
Yasuda K, Cline C, Vogel P. et al. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. . Drug Metab Dispos. 2013;41(4):923-31.
Stolp H., Liddelow S., Sá-Pereira I., et al. Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci. 2013; 23(7): 61. doi: 10.3389/fnint.2013.00061.
Qasımov E.K., Hüseynova Ş.Ə. Ağ siçovulun baş beyin qişalarinin struktur elementlərinin elektron mikroskopik quruluş xüsusiyyətləri. Milli Nevrologiya jurnalı, 2018; 14(2):63-71.
Гасымов Э.К. Пучки нервных волокон как транспортная единица в стволе периферических нервов. Азербайджанский медицинский журнал.1996; (9):14-18.
Банин В.В., Гасымов Э.К. Распределение протеинов в оболочках нерва как фактор реабсорбции эндоневральной (интерстициальной) жидкости. Архив анатомии, гистологии и эмбриологии.1990; (9):47-54.
Glimcher S., Holman D., Lubow M., Grzybowski D. Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest Ophthalmol Vis Sci. 2008; 49 (11): 4721-4728.
Nagra G., Wagshul M., Rashid S. et al. Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res. 2010;7(1):4.
Biceroglu H., Albayram S., Ogullar S. et al. Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine. 2012; 16(4): 394-401.