The material of the research was made up of material of dense ileaceecal intestine area taken from 23 cadavers belonging to different age periods of human extrauterine development and both gender.
In the study, microscopic preparations were stained with hematoxylin-eosin, methylene blue, and Van Gizon methods. In addition, impregnation with silver salts (Ranvier-Goyer and Bilshovsky-Gross methods), universal impregnation methods of selective detection of argyrophile structures were used in the study.
The results of the study show that large intestine ganglia are compact structures clearly separated from the surrounding tissue and composed of neuronal bodies, glial cell nuclei, and dense neuropil. They consist of neuronal bodiessurrounded by densely packed axons, dendrites, and glial cells and a small amount of intercellular substance. The cells in the ganglia do not have clear boundaries, the space around them is filled with weak eosinophilic neuropil. A large number (up to 60%) of type II Dogel cells are identified in these ganglia. Most of them are multipolar. In addition to type II Dogel cells, a significant number of type I Dogel cells were identified in the ganglia of the ileocecal region, forming local ganglionic assemblies. According to the received data, the number of type I Dogel cells in the ganglions of both the intramuscular and submucosal plexus of the large intestine increases towards the rectum. Some type I Dogel cells have an elongated shape, a centrally located nucleus, and numerous short cytoplasmic protrusions extending along the entire perimeter of the perikaryo. Bipolar form of type II Dogel cells predominates. Single pseudounipolar type II Dogel cells are found in rectal ganglia. It was determined by us that Gajal cells are located in the muscular membrane of the large intestine and on the basis of the submucosa near the wall of blood microvessels.
Belkind-Gerson, J. Colitis induces enteric neurogenesis through a 5-HT4 dependent mechanism / J.Belkind-Gerson, R.Hotta, N.Nagy
[et al.] // Inflammatory bowel disease. – 2015. 21 (4), – p. 870-878
Cirillo, C. S100B protein in the gut: The evidence for enteroglial-sustained intestinal inflammation / C.Cirillo, G.Sarnelli, G.Esposito
[et al.] // World J Gastroenterol. – 2011. 17(10), – p. 1261-1266
Geboes, K., Collins, S. Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis // Neurogastroenterol Motil. – 1998. 10(3), – p. 189-202.
Шадлинский, В.Б., Коркмазов, Б.М., Мовсумов, Н.Т. Нейронный состав и нейросекреторная функция звездчатого параверте-
брального ганглия человека в зрелом возрасте // – Баку: Здоровье, – 1996. No4, – с. 49-46
Aбдуллаев, А.С. Холинергическая и норадренергическая иннервация губных желез крыс // ‒ Кутаиси: Кутаисский медицинский
журнал, ‒ 1998. No1, ‒ с.10-11
Hubscher, C., Berkley, K. Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon // Brain Research., 2014. – 664(1-2), – p. 1-8
Пантелеев, С.С. Кортикальная модуляция висцеральных рефлексов / С.С.Пантелеев, В.А.Багаев, А.Д.Ноздрачев. – Санкт-
Петербург: Издательво Санкт-Петербургского университета, – 2014, – 208 с.
Kоржевский, Д.Э. Основы гистологической техники / Д.Э.Коржевский – Санкт-Петербург: Спец.Лит, – 2010. – 95 c.
.Даценко, А.В., Казьмин, В.И. Импрегнация микроглиоцитов солью серебра на гистологических срезах гиппокампа кроликов // –Саратов: Саратовский научно-медицинский журнал. – 2016. No4, – с. 692-695
Марков, И.И. Универсальный метод элективного выявления аргирофильных структур / И.И.Марков, Е.С.Петров, В.И.Маркова // Морфологические ведомости. – Самара: – 2016. No 1. – с. 114 – 117
Милохин, А.А., Решетников, С.С. Морфологические основания кортиковисцеральных связей / А.А. Милохин,
С.С.Решетников. – Линград: Наука. – 1970. – с. 59-68.
Pasternak A, Szura M, Gil K. Interstitial cells of Cajal - systematic review // Folia Morphol (Warsz). – 2016. 75(3), – p. 281-286.